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Abstract: A dominating set D of a graph G = (V,E) is a split dominating set
if the induced subgraph 〈V −D〉 is disconnected. The split domination number
γs(G) is the minimum cardinality of a split dominating set of G. The set of vertices
is a γs - set if it is split dominating set with γs(G). In this paper, we obtain the
total number of γs-sets, the Partially Balanced Incomplete Block (PBIB)-Designs
on γs-sets of certain jump sizes of Circulant graphs with m-association schemes for
1 ≤ m ≤

⌊
p
2

⌋
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1. Introduction

All graphs considered here are finite, undirected and connected with no loops and
multiple edges. As usual p = |V | and q = |E| denote the number of vertices and
edges of a graph G, respectively. For additional definitions and notations, the
reader may refer to [7] and [11].

For a given positive integer p, let s1, s2, . . ., st be a sequence of integers where 0 <
s1 < s2 < . . . < st <

p+1
2

. The Circulant graph Cp(S) where S = {s1, s2, . . . , st}
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is the graph on p vertices labelled as v1, v2, . . ., vp with vertex vi adjacent to each
vertex vi±sj(mod p) and the values st are called jump sizes.

The certain jump sizes of circulant graphs are important in digital encoding; this is
a wondrous technology it enables devices ranging from computers to music players
to recover from errors in transmission and storage of data and restore the original
data, see [15].

Bose and Nair introduced a class of binary, equi-replicate and proper designs,
which are called Partially Balanced Incomplete Block (PBIB)-Designs. In these
designs, all the elementary contrasts are not estimated with the same variance.
The variances depend on the type of association between the objects. There are
many applications of PBIB-Designs in cluster sampling, digital fingerprint codes,
in architecture of web solution. For more details, we refer to [1], [5] and [6].

Given ν elements (objects or vertices), a relation satisfying the following conditions
is said to be an association scheme with m classes:

(i) Any two elements are either first associates, or second associates, . . ., or mth

associates, the relation of association being symmetric.

(ii) Each object x has nk k
th associates, the number nk being independent of x.

(iii) If two objects x and y are kth associates, then the number of objects which
are ith associates of x and jth associates of y is pkij and is independent of the
kth associates x and y. Also pkij = pkji.

With the association scheme on ν objects, a PBIB-Design is an arrangement of ν
objects into b sets (called blocks) of size g where g < ν such that

(i) Every element is contained in exactly r blocks.

(ii) Each block contains g distinct elements.

(iii) Any two elements which are mth associates occur together in exactly λm
blocks.

The numbers ν, b, g, r, λ1, λ2, . . ., λm are called the parameters of the first kind,
whereas the numbers n1, n2, . . ., nm, pkij (i, j, k = 1, 2, . . ., m) are called the
parameters of the second kind. For more details, we refer to [4].

A subset D ⊆ V is said to be a dominating set of a graph G, if every vertex in
V − D is adjacent to some vertex in D. The minimum cardinality of vertices in
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such a set is called the domination number γ(G). For complete review, we refer to
[8], [9], [10], [12] and [13].

A dominating set D of a graph G is a split dominating set if the induced subgraph
〈V −D〉 is disconnected. The split domination number γs(G) is the minimum
cardinality of a split dominating set. The minimum split dominating set D with
|D| = γs(G) is called γs - set. This concept was introduced by Kulli and Janakiram,
see [14].

Slater [16] has introduced the concept of the number of dominating sets of a graph
G, which he denoted by HED(G) in honor of Steve Hedetniemi. In this paper,
#γs(G) is used to denote the minimum number of γs-sets of G. PBIB-Design
associated with domination related parameters are studied by [2], [3] and [17].

2. Circulant graph Cp(1)
The jump size of Circulant graph is one, known as cycle Cp with p ≥ 4 vertices.

That is, Cp(1) ∼= Cp; p ≥ 4.

Proposition 2.1. [14] For any Circulant graph Cp(1); p ≥ 4 vertices,

γs(Cp(1)) =
⌈p

3

⌉
.

Theorem 2.1. The collection of all γs-sets of a Circulant graph Cp(1); p = 3n,
n ≥ 2 vertices form a PBIB-Designs with bp

2
c - association scheme and parameters

are ν = p, b = 3, g =
⌈p

3

⌉
, r = 1 and

λm =

{
1, if m = 3t ; t ≥ 1

0, otherwise.

Proof. For a given Circulant graph Cp(1); p = 3n, n ≥ 2 vertices labeled as
v1, v2, . . . , vp. By Proposition 2.1, we have γs(Cp(1)) =

⌈
p
3

⌉
.

Further, the Circulant graph Cp(1); p = 3n, n ≥ 1 have three blocks of γs-sets, it
implies b = #γs(Cp(1)) = 3.

By Proposition 2.1, we have g = γs(Cp(1)) =
⌈
p
3

⌉
, where g is the number of elements

contained exactly in a block.

By virtue of the above facts, we have r = 1.

To obtain the m-associates for the elements, where 1 ≤ m ≤ bp
2
c. The two distinct

elements are first associates, if they have jump size 1 and they are kth - associates
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(2 ≤ k ≤ bp
2
c), if they have k jump sizes. These associates are as shown in Table

1 along with their matrix representations.

Association scheme
Elements First Second · · · k · · · p−1

2
p
2

v1 vp, v2 vp−1, v3 · · · v(p−(k−1))(mod p),
v(1+k)(mod p)

· · · v1+ p−1
2

, v1+ p−1
2

+1 v1+ p
2

v2 v1, v3 vp, v4 · · · v(p−(k−2))(mod p),
v(2+k)(mod p)

· · · v2+ p−1
2

, v2+ p−1
2

+1 v2+ p
2

v3 v2, v4 v1, v5 · · · v(p−(k−3))(mod p),
v(3+k)(mod p)

· · · v3+ p−1
2

, v3+ p−1
2

+1 v3+ p
2

...
...

...
...

...
...

...
...

vi
v(i−1)(mod p),
v(i+1)(mod p)

v(i−2)(mod p),
v(i+2)(mod p)

· · · v(p−(k−i))(mod p),
v(i+k)(mod p)

· · ·
v(i+ p−1

2
)(mod p),

v(i+ p−1
2

+1)(mod p)

v(i+ p
2
)(mod p)

...
...

...
...

...
...

...
...

vp vp−1, v1 vp−2, v2
... vp−k, vk

... v p−1
2

, v p−1
2

+1 v p
2

Table 1. Association schemes of Cp(s1, s2, . . . , st).

By Table 1, the parameters of second kind are given by ni = 2 for 1 ≤ i ≤ p−1
2

or
1 ≤ i ≤ p

2
− 1 or n p

2
= 1.

With the association scheme for the Table 1, we have the matrix representation of
the Circulant graph Cp(s1, s2, . . . , st) is

P k =


pk11 pk12 . . . pk

1 p−1
2

pk21 pk22 . . . pk
2 p−1

2
...

...
...

...
pk
( p−1

2
)1

pk
( p−1

2
)2

. . . pk
( p−1

2
) ( p−1

2
)


or

P k =


pk11 pk12 . . . pk1 p

2

pk21 pk22 . . . pk2 p
2

...
...

...
...

pkp
2
1 pkp

2
2 . . . pkp

2
p
2

 .

The possible values of k in the matrix P k are given below:
If k = 1, then
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(i) p1ij = 1 for 1 ≤ i ≤ p−1
2
− 1 and 1 ≤ i ≤ p

2
− 1, j = i+ 1.

(ii) p1ij = 1 for 1 ≤ j ≤ p−1
2
− 1 and 1 ≤ j ≤ p

2
− 1, i = 1 + j.

(iii) p1ij = 1 for i = p−1
2

, j = p−1
2

.

If 2 ≤ k ≤ p−3
2

and 2 ≤ k ≤ p
2
− 1, then

(i) pkij = 1 for 1 ≤ i ≤ p−3
2

and 1 ≤ i ≤ p
2
−1, i+j = k, j = k+i and i+j = p−k.

(ii) pkij = 1 for 1 ≤ j ≤ p−3
2

and 1 ≤ j ≤ p
2
− 1, i = k + j and i+ j = p− k.

If k = p−1
2

and k = p
2
, then

(i) pkij = 1 for 1 ≤ i ≤ p−3
2

, j = p−1
2
− i.

(ii) pkij = 1 for 1 ≤ i ≤ p−1
2

, j = p+1
2
− i.

(iii) pkij = 2 for 1 ≤ i ≤ p
2
− 1, j = k − i.

with other entries are all zero.

Hence the parameters of first kind are given by ν = p, b = 3, g =
⌈p

3

⌉
, r = 1,

λm = 1, where m is a multiple of 3; otherwise, λm = 0.

Theorem 2.2. The collection of all γs-sets of a Circulant graph Cp(1); p = 3n+1,
n ≥ 2 vertices form a PBIB-Designs with bp

2
c - association scheme and parameters

are ν = p, b = p, g =
⌈
p
3

⌉
, r =

⌈
p
3

⌉
and

λm =


2, if m = 3t− 1; t ≥ 1⌈
m
3

⌉
− 1, if m = 3t− 2; t ≥ 1⌈

p
3

⌉
−
⌈
m
2

⌉
, if m = 3t; t ≥ 1.

Proof. For a given Circulant graph Cp(1); p = 3n + 1, n ≥ 2 vertices labelled as
v1, v2, . . . , vp. By Proposition 2.1, we have γs(Cp(1)) =

⌈
p
3

⌉
.

Further, the Circulant graph Cp(1); p = 3n, n ≥ 1 have p blocks of γs-sets, it
implies b = #γs(Cp(1)) = p.

By Proposition 2.1, we have g = γs(Cp(1)) =
⌈
p
3

⌉
, where g is the number of elements

contained exactly in a block.

From the above facts, we have r =
⌈
p
3

⌉
.
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To obtain the m-associates for the elements, where 1 ≤ m ≤ bp
2
c. The two distinct

elements are first associates, if they have jump size 1 and otherwise they are kth-
associates (2 ≤ k ≤ bp

2
c), if they have k jump sizes. These associates are as shown

in the above Table 1 along with their matrix representations and the possible values
of k in P k.

Hence the parameters of first kind are given by ν = p, b = p, g =
⌈
p
3

⌉
, r =

⌈
p
3

⌉
,

λm = 2, where m = 3t − 1, t ≥ 1; λm =
⌈
m
3

⌉
− 1, where m = 3t − 2, t ≥ 1 and

λm =
⌈
p
3

⌉
−
⌈
m
2

⌉
, where m = 3t, t ≥ 1.

Theorem 2.3. The collection of all γs-sets of a Circulant graph Cp(1); p = 3n+2,
n ≥ 2 vertices form a PBIB-Designs with bp

2
c - association scheme and parameters

are ν = p, b = p, g =
⌈
p
3

⌉
, r =

⌈
p
3

⌉
and

λm =


0, if m = 3t− 2; t ≥ 1⌈
m
3

⌉
, if m = 3t− 1; t ≥ 1⌈

p
3

⌉
− m

3
, if m = 3t; t ≥ 1.

Proof. For a given Circulant graph Cp(1); p = 3n + 2, n ≥ 2 vertices labelled as
v1, v2, . . . , vp. By Proposition 2.1, we have γs(Cp(1)) =

⌈
p
3

⌉
.

Further, the Circulant graph Cp(1); p = 3n + 2, n ≥ 2 have p blocks of γs-sets, it
implies b = #γs(Cp(1)) = p.

By Proposition 2.1, we have g = γs(Cp(1)) =
⌈
p
3

⌉
, where g is the number of elements

contained exactly in a block.

From the above facts, we have r =
⌈
p
3

⌉
.

To obtain the m-associates for the elements, where 1 ≤ m ≤ bp
2
c. The two distinct

elements are first associates, if they have jump size 1 and they are kth-associates
(2 ≤ k ≤ bp

2
c) if they have k jump sizes. These associates are as shown in the

above Table 1 along with their matrix representations and the possible values of k
in P k.

Hence the parameters of first kind are given by ν = p, b = p, g =
⌈
p
3

⌉
, r =

⌈
p
3

⌉
,

λm = 0, where m = 3t − 2, t ≥ 1, λm =
⌈
m
3

⌉
, where m = 3t − 1, t ≥ 1 and

λm =
⌈
p
3

⌉
− m

3
, where m = 3t, t ≥ 1.

3. Circulant graph Cp(bp2c)
The Circulant graph with jump size bp

2
c; p ≥ 4 vertices, is Cp(bp2c).

Observation 3.1.
(i) Cp(bp2c) ∼= Cp(1); p = 2n+ 1, n ≥ 1 .
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(ii) The Circulant graph Cp(bp2c); p = 2n, n ≥ 1 vertices contain n times of K2’s
and they are disconnected.

Proposition 3.1. For any Circulant graph Cp(bp2c); p ≥ 4 vertices,

γs

(
Cp

(⌊p
2

⌋))
=
⌊p

2

⌋
.

Proof. Let Cp(bp2c) be a Circulant graph with p ≥ 4 vertices. Then the removal of
p
2

and (p+1)
2

vertices yields a γs-set, say D, which is greater than or equal to V −D
vertices and also 〈V −D〉 is disconnected. Thus the result follows.

Theorem 3.1. The set of all γs-sets of a Circulant graph Cp(bp2c); p ≥ 4 vertices
form a PBIB-Designs with bp

2
c - association scheme and the parameters are ν = p,

b = p, g = bp
2
c, r = bp

2
c and λm = dp

2
e −m; 1 ≤ m ≤ bp

2
c.

Proof. For a given Circulant graph Cp(bp2c); p = 2n, n ≥ 2 vertices labelled as
v1, v2, . . . , vp.
By Proposition 3.1, we have γs(bp2c) = bp

2
c.

Further, the Circulant graph Cp(bp2c); p = 2n, n ≥ 2 have p blocks of γs-sets, it
implies b = #γs(Cp(bp2c)) = p.

By Proposition 3.1, we have g = γs(Cp(bp2c)) = bp
2
c, where g is the number of

elements contained exactly in a block.

Association scheme
Elements First Second · · · k · · · p

2

v1 vp, v2 vp−1, v3 · · · v(p−(k−1))(mod p),
v(1+k)(mod p)

· · · v1+ p
2

v2 v1, v3 vp, v4 · · · v(p−(k−2))(mod p),
v(2+k)(mod p)

· · · v2+ p
2

v3 v2, v4 v1, v5 · · · v(p−(k−3))(mod p),
v(3+k)(mod p)

· · · v3+ p
2

...
...

...
...

...
...

...

vi
v(i−1)(mod p),
v(i+1)(mod p)

v(i−2)(mod p),
v(i+2)(mod p)

· · · v(p−(k−i))(mod p),
v(i+k)(mod p)

· · · v(i+ p
2
)(mod p)

...
...

...
...

...
...

...
vp vp−1, v1 vp−2, v2 · · · vp−k, vk · · · v p

2

Table 2. Association schemes of Cp(s1, s2, . . . , st); p (≥ 4) is even.
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From the above facts, we have r = bp
2
c.

To obtain the m-associates for the elements, where 1 ≤ m ≤ bp
2
c. We consider

the two distinct elements as first associates, if they have jump size k and they are
bp
2
cth-associates (1 ≤ k ≤ bp−2

2
c) if they have bp

2
c jump sizes. These associates are

as follows in Table 2 along with their matrix representations.

By Table 2, the parameters of second kind are given by ni = 2 for 1 ≤ j ≤ p
2
− 1,

n p
2

= 1 with the association scheme, we have the matrix representation of the
Circulant graph Cp(s1, s2, ..., st) is

P k =


pk11 pk12 . . . pk1 p

2

pk21 pk22 . . . pk2 p
2

...
...

...
...

pkp
2
1 pkp

2
2 . . . pkp

2
p
2

 .

The possible values of k in the matrix P k are given below:
If k = 1, then

(i) p1ij = 1 for 1 ≤ i ≤ p
2
− 1, j = i+ 1.

(ii) p1ij = 1 for i = 1 + j, 1 ≤ j ≤ p
2
− 1.

If 2 ≤ k ≤ p
2
− 1, then

(i) pkij = 1 for 1 ≤ j ≤ p
2
− 1, i+ j = k, j = k + i and i+ j = p− k.

(i) pkij = 1 for 1 ≤ j ≤ p
2
− 1, i = k + j and i+ j = p− k.

If k = p
2
, then pkij = 2 for 1 ≤ i ≤ p

2
− 1 and j = k − i with other entries are all

zero.

Hence the parameters of first kind are given by ν = p, b = p, g = bp
2
c, r = bp

2
c and

λm = dp
2
e −m; 1 ≤ m ≤ bp

2
c.

4. Circulant graph with odd jump sizes
The Circulant graph with odd jump size Cp(1, 3, . . . , bp2c); p ≥ 6 vertices is known as
a complete bipartite graph Kp1,p2 where p1 = p2; that is, Cp(1, 3, . . . ,

⌊
p
2

⌋
) ∼= Kp1,p2 .

Proposition 4.1. For any Circulant graph Cp(1, 3, . . . , bp2c); p = 4n−2 or 4n−1,
n ≥ 2 vertices,

γs

(
Cp

(
1, 3, . . . ,

⌊p
2

⌋))
=
⌈p

2

⌉
.
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Proof. Let Cp(1, 3, . . . , bp2c) be a Circulant graph with p ≥ 6 vertices labelled as
v1, v2, . . . , vp. If D = {vi : i = 2k or 2k + 1; k ≥ 1} is a γs-set with respect to

D1 = D ∪ {vp} of Cp(1, 3, . . . , bp2c), then γs(Cp(1, 3, . . . , bp2c)) ≤
⌈p

2

⌉
.

Further, if D is any γs-set of Cp(1, 3, . . . , bp2c) and hence |D| ≥ dp
2
e. Thus the result

follows.

Theorem 4.1. The collection of all γs-sets of a Circulant graph Cp(1, 3, . . . , bp2c);
p = 4n− 2, n ≥ 2 vertices form a PBIB-Designs with bp

2
c-association scheme and

parameters are given by ν = p, b = 2, g =
⌈p

2

⌉
, r = 1 and

λm =

{
1, if m = 2t; t ≥ 1

0, otherwise.

Proof. For a Circulant graph Cp(1, 3, . . . , bp2c); p = 4n− 2, n ≥ 2 vertices labelled
as v1, v2, . . . , vp.

By Proposition 4.1, we have γs(Cp(1, 3, . . . , bp2c)) =
⌈p

2

⌉
.

Further, the Circulant graph with odd jump sizes Cp(1, 3, . . . , bp2c); p = 4n − 2,
n ≥ 2 have two blocks of γs-set, it implies

b = #γs(Cp(1, 3, . . . , b
p

2
c)) = 2.

Association scheme
Elements First Second · · · k · · · p−1

2

v1 vp, v2 vp−1, v3 · · · v(p−(k−1))(mod p),
v(1+k)(mod p)

· · · v1+ p−1
2

, v1+ p−1
2

+1

v2 v1, v3 vp, v4 · · · v(p−(k−2))(mod p),
v(2+k)(mod p)

· · · v2+ p−1
2

, v2+ p−1
2

+1

v3 v2, v4 v1, v5 · · · v(p−(k−3))(mod p),
v(3+k)(mod p)

· · · v3+ p−1
2

, v3+ p−1
2

+1

...
...

...
...

...
...

...

vi
v(i−1)(mod p),
v(i+1)(mod p)

v(i−2)(mod p),
v(i+2)(mod p)

· · · v(p−(k−i))(mod p),
v(i+k)(mod p)

· · ·
v(i+ p−1

2
)(mod p),

v(i+ p−1
2

+1)(mod p)

...
...

...
...

...
...

...
vp vp−1, v1 vp−2, v2 · · · vp−k, vk · · · v p−1

2
, v p−1

2
+1

Table 3. Association schemes of Cp(s1, s2, . . . , st); p is odd.
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By Proposition 4.1, we have g = γs(Cp(1, 3, . . . , bp2c)) =
⌈p

2

⌉
, where g is the number

of elements contained exactly in a block.

From the above facts, we have r = 1.

To obtain the m-associates for the elements, where 1 ≤ m ≤ bp
2
c. The two distinct

elements are odd associates, if they have odd jump size and they are even associates
(2 ≤ k ≤ bp

2
c) if they have even jump sizes. These associates are as shown in Table

3 along with their matrix representations.

By Table 3, the parameters of second kind are given by ni = 2 for 1 ≤ i ≤ p−1
2

and
n p

2
= 1.

With the association scheme for the Table 3, we have the matrix representation of
the Circulant graph with odd jump sizes Cp(s1, s2, . . . , st); p (≥ 6) vertices is

P k =


pk11 pk12 . . . pk

1 p−1
2

pk21 pk22 . . . pk
2 p−1

2
...

...
...

...
pk
( p−1

2
)1

pk
( p−1

2
)2

. . . pk
( p−1

2
) ( p−1

2
)

 .

There fore the possible values of k in the matrix P k are given below:
If k = 1, then

(i) p1ij = 1 for 1 ≤ i ≤ p−1
2
− 1, j = i+ 1.

(ii) p1ij = 1 for 1 ≤ j ≤ p−1
2
− 1, i = 1 + j.

(iii) p1ij = 1 for i = p−1
2

, j = p−1
2

.

If 2 ≤ k ≤ p−3
2

, then

(i) pkij = 1 for 1 ≤ i ≤ p−3
2

, i+ j = k, j = k + i and i+ j = p− k.

(ii) pkij = 1 for 1 ≤ j ≤ p−3
2

, i = k + j and i+ j = p− k.

If k = p−1
2

, then

(i) pkij = 1, for 1 ≤ i ≤ p−3
2

, j = p−1
2
− i.

(i) pkij = 1, for 1 ≤ i ≤ p−1
2

, j = p+1
2
− i.
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with other entries are all zero.

Hence the parameters of first kind are given by ν = p, b = 2, g =
⌈p

2

⌉
, r = 1,

λm = 1;m = 2t where t ≥ 1 and otherwise λm = 0.

Theorem 4.2. The collection of all γs-sets of a Circulant graph Cp(1, 3, . . . , bp2c);
p = 4n− 1, n ≥ 2 vertices form a PBIB-Designs with bp

2
c-association scheme and

parameters are ν = p, b = p, g =
⌈p

2

⌉
, r =

⌈p
2

⌉
and λm =

⌈m
2

⌉
; m = 2t − 1,

t ≥ 1.

Proof. For a given Circulant graph Cp(1, 3, . . . , bp2c); p = 4n − 1, n ≥ 2 vertices
labelled as v1, v2, . . . , vp.

By Proposition 4.1, we have γs(Cp(1, 3, . . . , bp2c)) =
⌈p

2

⌉
.

Further, the Circulant graph with odd jump sizes Cp(1, 3, . . . , bp2c); p = 4n − 1,
n ≥ 2 have p blocks of γs-sets, it implies

b = #γs(Cp(1, 3, . . . , b
p

2
c)) = p.

By Proposition 4.1, we have g = γs(Cp(1, 3, . . . , bp2c)) =
⌈p

2

⌉
, where g is the number

of elements contained exactly in a block.

From the above facts, we have r =
⌈p

2

⌉
.

To obtain the m-associates for the elements, where 1 ≤ m ≤ bp
2
c. We consider

the two distinct elements odd associates, if they have odd jump size and they are
even associates (2 ≤ k ≤ bp

2
c) if they have even jump sizes. These associates are

as shown in the above Table 3 along with their matrix representations.

Hence the parameters of first kind are given by ν = p, b = p, g =
⌈p

2

⌉
, r =

⌈p
2

⌉
and λm =

⌈m
2

⌉
for m = 2t− 1, t ≥ 1.

5. Circulant graph with even jump sizes
The even jump size (2, 4, . . . , bp

2
c) of Circulant graph is denoted by Cp(2, 4, . . . , bp2c)

with p ≥ 4 vertices.

Proposition 5.1. For any Circulant graph Cp(2, 4, . . . , bp2c) with p ≥ 4 vertices,

γs

(
Cp

(
2, 4, . . . ,

⌊p
2

⌋))
= 2

Proof. Let Cp(2, 4, . . . , bp2c) be a Circulant graph with p ≥ 4 vertices. Since the
Circulant graph Cp(2, 4, . . . , bp2c) is a (2n − 1)-regular for p ≥ 4 vertices. Hence
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γs
(
Cp

(
2, 4, . . . ,

⌊
p
2

⌋))
= 2 follows.

Theorem 5.1. The collection of all γs-sets of a Circulant graph Cp(2, 4, . . . , bp2c);
p ≥ 4 vertices form a PBIB-Designs with bp

2
c-association scheme and parameters

are ν = p, b = p, g = 2, r = 2 and

λm =

{
1, if m = 1

0, otherwise.

Proof. For a given Circulant graph Cp(2, 4, . . . , bp2c); p ≥ 4 vertices labelled as
v1, v2, . . . , vp.

By Proposition 5.1, we have γs(Cp(2, 4, . . . , bp2c)) = 2.

Further, the Circulant graph with even jump sizes Cp(2, 4, . . . , bp2c) with p ≥ 4
have p blocks of γs-sets, it implies

b = #γs(Cp(2, 4, . . . , b
p

2
c)) = p.

By Proposition 5.1, we have g = γs(Cp(2, 4, . . . , bp2c)) = 2, where g is the number
of elements contained exactly in a block.

From the above facts, we have r = 2.

To obtain the m-associates for the elements, where 1 ≤ m ≤ bp
2
c. Two distinct

elements odd associates, if they have odd jump size and they are even associates
(2 ≤ k ≤ bp

2
c) if they have even jump sizes. These associates are as shown in Table

2 along with their matrix representations and the possible values of k in P k.

Hence the parameters of first kind are given by ν = p, b = p, g = 2, r = 2 and
λm = 1 where m = 1 and λm = 0; otherwise.

6. Circulant graph Cp(1, 2, . . . , bp2c)
The jump size of circulant graph is 1, 2, . . . , bp

2
c, known as complete graph Kp

with p ≥ 3 vertices, that is, Cp

(
1, 2, . . . ,

⌊
p
2

⌋) ∼= Kp.

Theorem 6.1. The collection of all γs-sets of a Circulant graph Cp(1, 2, 3, . . . , bp2c);
p ≥ 3 vertices does not form a PBIB-Designs.

Proof. Since Cp

(
1, 2, . . . ,

⌊
p
2

⌋) ∼= Kp; p ≥ 3 vertices with every pair of vertices are
adjacent. Hence γs-set of Cp

(
1, 2, . . . ,

⌊
p
2

⌋)
does not form.
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